Changes in fracture treatment which help practitioners (Proceedings)


Changes in fracture treatment which help practitioners (Proceedings)

Aug 01, 2011

For any fracture patient, the decision as to which stabilization system to apply is made by assessing the mechanical, biologic, and clinical factors that influence outcome. There are two mechanisms by which a fracture can be stabilized: (1) internal or external fixation and (2) formation of a biobuttress (biological buttress, callus). By assessing the three influential aspects of treatment (mechanical, biological, clinical), the attending surgeon is able to choose a fixation method that will balance the stability gained through application of a fixation device with the stability gained by the formation of a callus (biobuttress). Exposure technique is one essential method to preserve the biologic response. Exposure technique may be closed, open, or minimally invasive via strategically placed portals.

Minimally invasive fracture repair has gained popularity in recent years. Initially the technique seems difficult but as with other techniques, with practice and adherence to principle, the technique is readily mastered. Following assessment and stabilization of the animal, the attending surgeon must decide upon the appropriate management of the case. Assessment includes factors important relative to the biologic potential (potential for callus formation), technique of reduction, and clinical factors. Biologic factors evaluate the potential for callus (biobuttress) formation. Other biologic factors to consider are bone involved, location of the fracture (cortical vs cancellous), injury to the surrounding soft tissue envelope and surgical technique. Once the biologic assessment has determined the potential time for callus deposition, the attending surgeon must decide upon the method of exposure and reduction technique. Exposure choices are closed exposure, minimally invasive exposure or open exposure; reduction technique choices are direct reduction or indirect reduction.

Closed exposure methods cause the least damage to the surrounding soft tissue. This technique is most commonly used with application of external skeletal fixation for fractures of the radius or the tibia. Occasionally closed intramedullary pinning is applied when the biologic assessment indicates very rapid biobuttress formation and a single IM pin can be used for stabilization. As a rule this is only true in very young animals (3-4 months of age).