ADVERTISEMENT

Feeding tube management and complications (Proceedings)

source-image
Aug 01, 2010

Indications for Tube Use

Does the use of feeding tubes have a place in everyday practice? We are all familiar with the use of feeding tubes for Hepatic Lipidosis cats, but how many times do we deal with the older animal with no obvious physical problem other than an unwillingness to eat adequate (in our opinion) amounts of food? What about the HBC that has a jaw fracture and is having trouble eating enough food to support themselves? As renal failure advances, the animals' appetite often decreases to such a level that this is a bigger concern than the renal failure. An animal being treated for cancer may either develop nausea from the chemotherapy or decreased appetite from the disease. These and many other scenarios are seen routinely in practice and could benefit from the placement of a feeding tube.

Types of Tubes

The most commonly placed feeding tubes are nasoesophageal, esophageal, gastrostomy and jejunostomy. All, with the exception of the nasoesophageal require some level of anesthesia, with the jejunostomy tube usually requiring surgical placement. Nasoesophageal and jejunostomy tubes can only be used under hospital supervision, while esophageal and gastrostomy tubes can be managed by owners at home after the initial reintroduction of food has been done in-hospital.

Esophageal tubes can be placed using minimal equipment following standard technique practices. Gastrostomy tubes can be placed blind using specialized equipment, placed with the aid of a gastroscope (percutaneous endoscopic gastrostomy or PEG) or surgically. Any of these tubes can be placed in any animal that can undergo anesthesia. Anesthesia time is typically 15-20 minutes., and they do not need to achieve a surgical plane of anesthesia, just enough so that jaw tone is lost. Esophageal strictures may preclude endoscopic placement of a feeding tube, but surgical placement can often be done. If the animal is not totally anorexic and not metabolically compromised (i.e. electrolyte disturbances, low phosphorus, low PCV etc) the tube can be placed and the animal discharged from the hospital to the owners care within 1-3 days.

Feeding can be started immediately with nasoesophageal tube, and within 12 hours esophageal, gastrostomy and jejunostomy tubes. This delay allows a temporary stoma to form around the tube insertion site prior to feeding. A complete feeding plan should be done for each animal with written feeding directions given to the owner. Because many owners are unfamiliar with the use of syringes and the feeding procedure itself, plan on doing an extended discharge for each animal. This should include tube maintenance, feeding directions and feeding amounts; this typically takes 30-45 minutes.

There are multiple veterinary recovery diets that are available in a gruel form that pass easily through most of the larger bore feeding tube (12 fr and higher). Sometimes adding as little as 1-2 tablespoons (15-30 ml) to the can of food will greatly increase ease of passage. If needed, homemade gruel diets can be prepared from commercial diets. The disadvantage of using these diets would be not knowing the caloric amount found in each ml of the final mixture, or the final volume achieved after mixing. These diets also tend to fall out of suspension after they've been mixed with water.

For long term use, place a PEG tube. After a stoma has formed around the rubber feeding tube (usually 3-4 weeks), the tube can be replaced with a low profile or foley type silicone feeding tube. A rubber catheter has a useful life of 12-16 weeks. This is adequate for most hepatic lipidosis cats and post surgical dogs, but this may not be enough time for a renal failure animal or HBC jaw fracture. The silicone catheters have a useful life of over 1 year, depending on maintenance and care. When they need to be replaced, another silicone catheter can simply be placed in the stoma site.