Using titers to diagnose disease: When is a positive a positive? (Proceedings)


Using titers to diagnose disease: When is a positive a positive? (Proceedings)

Apr 01, 2010

For most diagnostic tests, the 'titer' is the minimum dilution of a substance that is required to yield a positive result. For example, for detection of anti-Leptospira sp. Antibodies, the titer is the dilution of serum which still causes microbes to crosslink. Unfortunately, the sensitivity and specificity of the available tests varies for each organism, for each laboratory, and even from day-to-day due to observer error. Regardless of the test being performed it is rare that a 'positive' result in and of itself is a guarantee of disease. This presentation will review the more common 'titer' tests available to us as clinicians, and discuss common methods of interpretation (and misinterpretation).

Antibody Titers

Antibodies are produced by B-cells and plasma cells. Initially IgM is rapidly produced to bind and neutralize antigens, fix complement, and opsonize microbes for phagocytosis. Once T-cells are recruited and recognize the activated B-cell, isotype switching to IgG or IgA occurs. Antibodies are then produced in large amounts and enter the systemic circulation. For unknown reasons some organisms are able to produce fulminant infections without induction of a significant antibody response; this likely occurs because they induce alternative immune responses that rely less on antibodies as effector molecules. After resolution of infection antibody concentrations may or may not decline over time, which may depend on whether the organism persists in the host.

The gold standard for diagnosis of leptospirosis is identification of organisms in urine or in tissues. Unfortunately these methods are very insensitive (organisms are rarely visible despite the presence of infection), invasive (renal biopsy), and not readily available (dark field microscopy). Therefore antibody agglutination titers are routinely used in conjunction with consistent clinical signs to diagnose cases. Agglutination tests detect antibodies by testing the ability of the patient's serum to cause intact Leptospira organisms to be crosslinked by circulating antibodies: when viewed with a microscope, crosslinking results in visible agglutination. Serum is tested against laboratory strains of multiple serovars in order to provide titers for each one. Unfortunately, the Leptospira spp. vaccines uses killed whole organisms to induce immunity, and as a result the antibodies that are produced are against multiple proteins, and cannot be distinguished from infection-induced titers by the agglutination test. Additionally infection results in cross-reacting antibodies against multiple serovars. Therefore, interpretation of Leptospira titers must be done with caution. In general:
           1. The highest serovar titer is considered to be the infecting serovar. This rarely is clinically important, with the exception of those cases where hepatic failure is also present. Serovars icterohemmorhagica and canicola are most commonly associated with acute liver failure, whereas grippotyphosa has been associated with chronic hepatopathy.
           2. The Leptospira spp. vaccines usually cause relatively low antibody titers against all serovars; the highest serovars may be the vaccinal ones, although this is not always true. Regardless, although titers may be high soon after vaccination (i.e. greater than or equal to 1:800), they frequently decrease to much lower concentrations.
           3. A titer only indicates exposure or vaccination, and is not synonymous with disease. In the absence of renal dysfunction there is no indication that treatment is needed.
           4. Infected dogs usually have high titers at the time of diagnosis. However in rare cases astute clinicians may test dogs early in their disease process, at which time the antibody titer may be low or negative. A convalescent titer may be required after a 10-14 day period to confirm a 4-fold increase in titer.